glutaramide and glutamine analogs as possible antineoplastic agents is evident from their activities by way of glutamine and/or folic acid antagonism. Glutaramic acid analogs may be regarded as the precursors of glutaramides and may interfere with the biochemical and physiological functions of natural glutaramic acid and/or folic acid or their derivatives by taking their place or by blocking the enzymes or coenzymes involved in their metabolism (Debnath, Jha, Majumdar & De, 1987). The X-ray structural information gained from a study of 3-(4bromophenyl)-5-n-butylglutaramic acid may help to reveal the effects of different substituents on antineoplastic activity. The bond distance C(1)—Br(1) = 1.884 (10) Å is quite close to the value of 1.911 Å obtained by Kosuge, Tsuji & Hirai (1981). The deviation of the Br(1) atom from the least-squares plane through the benzenoid ring [C(1)-C(6)] is -0.017 Å. Some intramolecular contacts are O(1)…O(2), 2.209 (13) and C(12)…O(3), 2.833 (18) Å [with an O…H contact of 2.41 (17) Å]. The molecules hydrogen are linked through bonds: N(1) - H(N1) - O(1), $N \cdots O = 2.968 (16) Å$ and O(2)—H(O2)···O(3), O···O = 2.570 (11) Å.

### References

- BEURSKENS, P. T., BEURSKENS, G., STRUMPEL, M. & NORDMAN, C. E. (1987). Patterson and Pattersons, edited by J. P. GLUSKER, B.
- K. PATTERSON & M. ROSSI, pp. 356-367. Oxford Univ. Press. BEURSKENS, P. T., BOSMAN, W. P., DOESBURG, H. M., VAN DEN HARK, TH. E. M., PRICK, P. A. J., NOORDIK, J. H., BEURSKENS, G., GOULD, R. O. & PARTHASATHI, V. (1983). Conformation in Biology, edited by R. SRINIVASAN & R. H. SARMA, pp. 389-406. New York: Adenine Press.
- BEURSKENS, P. T., GOULD, R. O., BRUINS SLOT, H. J. & BOSMAN, W. P. (1987). Z. Kristallogr. 179, 127–159.
- DE, A. U. & PAL, D. (1975). J. Pharm. Sci. 64, 262-264.
- DE, A. U. & PAL, D. (1977). J. Pharm. Sci. 66, 232-234.
- DEBNATH, A. K., JHA, T., MAJUMDAR, A. & DE, A. U. (1987). Personal communication.
- GRANT, D. F. & GABE, E. J. (1978). J. Appl. Cryst. 11, 114-120.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KOSUGE, T., TSUJI, K. & HIRAI, K. (1981). Tetrahedron Lett. 22, 3417-3420.
- LEHMANN, M. S. & LARSEN, F. K. (1974). Acta Cryst. A30, 580-584.
- MOTHERWELL, W. D. S. (1976). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A39, 158-166.

### Acta Cryst. (1989). C45, 1647-1649

## Structure of $N^2$ -p-Bromophenyl- $N^1$ -methyl- $N^1$ -phenylbenzamidine

BY A. KNYCHAŁA, U. RYCHLEWSKA AND Z. KOSTURKIEWICZ\*

Department of Crystallography, A. Mickiewicz University, ul. Grunwaldzka 6, 60-780 Poznań, Poland

AND J. OSZCZAPOWICZ

Faculty of Chemistry, Warsaw University, ul. Pasteura 1, 02-093 Warsaw, Poland

(Received 24 February 1989; accepted 9 May 1989)

Abstract.  $C_{20}H_{17}BrN_2$ ,  $M_r = 365\cdot3$ , orthorhombic,  $P2_12_12_1$ ,  $a = 9\cdot267(1)$ ,  $b = 12\cdot312(1)$ ,  $c = 15\cdot392(1)$  Å,  $V = 1754\cdot6(6)$  Å<sup>3</sup>, Z = 4,  $D_m = 1\cdot36$ ,  $D_x = 1\cdot38$  Mg m<sup>-3</sup>,  $\lambda$ (Cu  $K\alpha$ ) =  $1\cdot54178$  Å,  $\mu$ (Cu  $K\alpha$ )  $= 2\cdot9$  mm<sup>-1</sup>, F(000) = 744, room temperature,  $R = 0\cdot027$  for 1248 observed reflexions. Crystals of the title compound are isostructural with those of  $N^1$ methyl- $N^1$ -phenyl- $N^2$ -(p-tolyl)benzamidine [Oszczapowicz, Tykarska, Jaskólski & Kosturkiewicz (1986). Acta Cryst. C42, 1816–1818], which suggests that a Br atom exerts the same steric effect as a methyl group, and which confirms the stereochemical similarity between these two molecules. In both mole-

0108-2701/89/101647-03\$03.00

cules the phenyl rings are situated on one side of the amidine moiety while the other side is occupied by the methyl group alone, and the configuration around the double bond  $C-N^2$  is *trans* (*E*). The steric hindrance is primarily relaxed by twisting of the phenyl substituents at N<sup>1</sup>,  $C_{\text{amidine}}$  and N<sup>2</sup> relative to the central amidine plane by 62·2 (5), 60·6 (5) and 71·1 (5)°, respectively. Two C-N bonds in the amidine moiety differ in length [1·359 (5) and 1·291 (5) Å for C-N<sup>1</sup> and C-N<sup>2</sup>, respectively] and the N<sup>1</sup>-C-N<sup>2</sup> angle is 118·9 (3)°. These values are similar to those found in the *p*-tolyl derivative.

**Experimental.** The title compound was synthesized by Oszczapowicz, Raczyńska & Orliński (1981). © 1989 International Union of Crystallography

<sup>\*</sup> To whom correspondence should be addressed.

# Table 1. Final fractional coordinates and equivalent isotropic thermal parameters $(Å^2)$

| $U_{aa} = \bar{1} \sum_{i} \sum_{k} U_{ik} a_{i} a_{i} a_{i} a_{k}$ | U., | $\Sigma_{i}\Sigma_{i}U_{i}a^{*}a_{i}$ | *(aa.). |  |
|---------------------------------------------------------------------|-----|---------------------------------------|---------|--|
|---------------------------------------------------------------------|-----|---------------------------------------|---------|--|

|       | x           | у            | Z            | $U_{eq}$   |
|-------|-------------|--------------|--------------|------------|
| Br(1) | 0.35248 (7) | -0.15007 (5) | -0.26524 (4) | 0.0907 (2) |
| N(1)  | 0-5303 (4)  | 0.2455 (2)   | 0.1503 (2)   | 0.049 (1)  |
| N(2)  | 0-4132 (4)  | 0.1673 (3)   | 0.0351 (2)   | 0.054 (1)  |
| C(1)  | 0.5144 (4)  | 0.1617 (3)   | 0.0926 (2)   | 0·044 (1)  |
| C(2)  | 0-6195 (4)  | 0.0705 (3)   | 0.0992 (2)   | 0.041 (1)  |
| C(3)  | 0.7665 (5)  | 0.0893 (4)   | 0.0872 (3)   | 0.052 (2)  |
| C(4)  | 0.8628 (5)  | 0.0025 (4)   | 0.0907 (3)   | 0.063 (2)  |
| C(5)  | 0.8128 (6)  | -0.1018 (4)  | 0.1057 (3)   | 0.068 (2)  |
| C(6)  | 0.6681 (6)  | -0.1199 (3)  | 0.1177 (3)   | 0.063 (2)  |
| C(7)  | 0.5722 (5)  | -0.0348 (3)  | 0.1136 (3)   | 0.053 (2)  |
| C(11) | 0.6085 (4)  | 0.2360 (3)   | 0.2294 (3)   | 0.045 (1)  |
| C(12) | 0.5826 (5)  | 0.1512 (3)   | 0.2869 (2)   | 0.053 (1)  |
| C(13) | 0.6611 (6)  | 0.1462 (4)   | 0.3633 (3)   | 0.071 (2)  |
| C(14) | 0.7626 (6)  | 0.2240 (5)   | 0.3842 (3)   | 0.077 (2)  |
| C(15) | 0.7867 (5)  | 0.3075 (4)   | 0.3268 (3)   | 0.072 (2)  |
| C(16) | 0.7111 (5)  | 0.3132 (4)   | 0.2491 (3)   | 0.060 (2)  |
| C(17) | 0.4429 (5)  | 0.3434 (3)   | 0.1380 (3)   | 0.064 (2)  |
| C(21) | 0.4063 (4)  | 0.0884 (3)   | -0.0319 (3)  | 0.049 (1)  |
| C(22) | 0.2893 (5)  | 0.0185 (4)   | -0.0357 (3)  | 0.058 (2)  |
| C(23) | 0.2769 (5)  | -0.0544 (4)  | -0.1038 (3)  | 0.064 (2)  |
| C(24) | 0.3790 (5)  | -0.0563 (3)  | -0.1684 (3)  | 0.057 (2)  |
| C(25) | 0.4954 (5)  | 0.0120 (3)   | -0.1663 (3)  | 0.058 (2)  |
| C(26) | 0.5101 (5)  | 0.0855 (3)   | -0.0983 (3)  | 0.055 (2)  |

Table 2. Bond lengths (Å) and angles (°)

| N(1)C(1)              | 1.369 (5)                   | C(13)C(14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.380 (8)      |
|-----------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| C(1) - N(2)           | 1.291 (5)                   | C(14)C(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.374 (7)      |
| C(1)C(2)              | 1.491 (6)                   | C(15)-C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.388 (7)      |
| C(2)C(3)              | 1.394 (6)                   | C(16) - C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.378 (6)      |
| C(3)-C(4)             | 1.393 (6)                   | N(2) - C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.419 (5)      |
| C(4)C(5)              | 1.385 (7)                   | C(21)C(22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.386 (6)      |
| C(5)-C(6)             | 1.372 (7)                   | C(22)C(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.385 (7)      |
| C(6)C(7)              | 1.375 (6)                   | C(23)C(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.373 (7)      |
| C(7)C(2)              | 1.386 (6)                   | C(24)C(25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.369 (7)      |
| N(1)C(17)             | 1.465 (6)                   | C(25)C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.391 (6)      |
| N(1)C(11)             | 1.422 (5)                   | C(26)C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.403 (6)      |
| C(11)C(12)            | 1·389 (6)                   | C(24)—Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.901 (4)      |
| C(12)C(13)            | 1·384 (6)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| N(1) - C(1) - N(2)    | 118-9 (3)                   | C(14)C(15)C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (16) 120.6 (4) |
| N(1) - C(1) - C(2)    | 117.0 (3)                   | C(15)C(16)C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (11) 120.2 (4) |
| C(1) - N(1) - C(17)   | 118.5 (3)                   | C(12)C(11)C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16) 119-8 (3)  |
| C(1) - N(1) - C(11)   | 123-2 (3)                   | N(1) - C(11) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6) 118·9 (3)   |
| N(2) - C(1) - C(2)    | 124.2 (3)                   | C(11) - N(1) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7) 117.4 (3)   |
| C(1) - C(2) - C(3)    | 120-3 (3)                   | C(1) - N(2) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) 119.7 (3)    |
| C(2) - C(3) - C(4)    | 119.6 (4)                   | N(2) - C(21) - C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22) 119.4 (3)  |
| (13) - (14) - (15)    | 120-2 (4)                   | N(2) - C(21) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26) 121.1 (3)  |
| C(4) - C(5) - C(6)    | 120-0 (4)                   | C(21) - C(22) - C(22 | 23) 120.0 (4)  |
| (3) - (6) - (7)       | 120.1 (4)                   | C(22)C(23)C(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24) 120.2 (4)  |
| C(6) - C(7) - C(2)    | 121.0 (4)                   | C(23) - C(24) - C(24 | 25) 121.0 (4)  |
| (1) - (12) - (13)     | 119.1 (3)                   | C(24) - C(25) - C(25 | 26) 119-7 (4)  |
| C(1) = C(2) = C(1)    | 120.6 (3)                   | C(21) - C(26) - C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25) 119.9 (4)  |
| N(1) = C(11) = C(12)  | 121.3(3)                    | C(20) - C(21) - C(21 | 22) 119-3 (3)  |
| C(12) - C(12) - C(1)  | (3) 118.9 (3)               | C(22) - C(21) - N(22) - N(22 | (2) 119.4 (3)  |
| C(12) = C(13) = C(14) | $\frac{1}{121} \frac{1}{4}$ | C(23)C(24)-Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119-3 (3)      |
| U13)U(14)U(13         | ) II∂'/(4)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |

Crystal obtained from anhydrous acetone/hexane solution; density by flotation. Space group from Weissenberg photographs. Crystal  $0.32 \times 0.30 \times 0.25$  mm, Syntex P2<sub>1</sub> diffractometer, cell parameters from least-squares treatment of setting angles of 15 reflexions with  $16 \le 2\theta \le 22^\circ$ . 1838 reflexions with  $2\theta \le 115^\circ$  measured in range  $h \ 0 \rightarrow 11$ ,  $k \ 0 \rightarrow 14$ ,  $l \ 0 \rightarrow 15^\circ$ 

18. No significant intensity variation  $(\pm 1.1\%)$  for two standard reflexions (020 and  $\overline{2}12$ ) recorded every 100 reflexions. Peak-profile analysis according to Lehmann & Larsen (1974); no absorption correction. 1252 observed reflexions with  $I \ge 2\sigma(I)$ . Structure solved by heavy-atom method and refined by fullmatrix least-squares calculations on F's, initially with isotropic and finally with anisotropic temperature factors for the non-H atoms. Function minimized:  $w(F_o - F_c)^2$ , with weights based on counting statistics:  $w = 1/\sigma(F_o)$ . H-atom positions from molecular geometry, assigned isotropic temperature factor U = $0.07 \text{ Å}^2$ , allowed to ride on parent C atoms, methyl group treated as rigid body. H atoms included as fixed isotropic contribution to  $F_c$ . Empirical extinction parameter x refined to  $2.0 \times 10^{-6}$  and F<sub>c</sub> multiplied by  $(1 - xF_c^2)/\sin\theta$ . Four reflexions (601, 052, 075, 092) with large  $\Delta F/\sigma$  excluded from final refinement. Refinement converged with R = 0.027, wR = 0.031, S = 3.54. Max.  $(\Delta/\sigma)$  in the last cycle = 0.07,  $(\Delta \rho)_{\text{max}} = 0.20$ ,  $(\Delta \rho)_{\text{min}} = -0.27 \text{ e} \text{ Å}^{-3}$ . Scattering factors as in *SHELX*76 (Sheldrick, 1976). Computations by SHELX76 and local programs (Jaskólski, 1982). In the final stages of refinement additional cycles were performed to differentiate between two enantiomeric structures. Changing the signs of the atomic positional parameters resulted in convergence at R = 0.038 and wR = 0.046, indicating the correctness of the originally chosen structure.

The molecular structure with the atomic labelling is shown in Fig. 1. Positional parameters and the equivalent U values are given in Table 1.\* Bond lengths and angles are presented in Table 2.

\* Lists of structure factors, anisotropic thermal parameters, torsion angles and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51920 (12 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.



Fig. 1. Stereoview of the title molecule. H atoms are represented by dots.

**Related literature.** The crystals of title compound are isostructural with those of  $N^1$ -methyl- $N^1$ -phenyl- $N^2$ -(p-tolyl)benzamidine (Oszczapowicz, Tykarska, Jaskólski & Kosturkiewicz, 1986). The configuration around C= $N^2$  is the same as in  $N^2$ -(p-methoxyphenyl)- $N^1$ , $N^1$ -pentamethylenebenzamidine (Tykarska, Jaskólski & Kosturkiewicz, 1986) and  $N^1$ , $N^2$ diphenylbenzamidine (Alcock, Barker & Kilner, 1988), but opposite to that in the  $N^2$ -p-nitrophenylbenzamidine (Surma, Jaskólski, Kosturkiewicz & Oszczapowicz, 1988). The rules governing the configuration of amidines are discussed by Ciszak, Gdaniec, Jaskólski, Kosturkiewicz, Owsiański & Tykarska (1989).

The authors acknowledge the support of program RP.II.10.6.1.5. (MEN).

#### References

- ALCOCK, N. W., BARKER, J. & KILNER, M. (1988). Acta Cryst. C44, 712-715.
- CISZAK, E., GDANIEC, M., JASKÓLSKI, M., KOSTURKIEWICZ, Z., OWSIAŃSKI, J. & TYKARSKA, E., (1989). Acta Cryst. C45, 433-438.
- JASKÓLSKI, M. (1982). Fourth Symposium on Organic Crystal Chemistry, Poznań, September 1982, edited by Z. KAŁUSKI, pp. 70-71. Adam Mickiewicz Univ., Poland.
- LEHMANN, M. S. & LARSEN, F. K. (1974). Acta Cryst. A30, 580-584.
- OSZCZAPOWICZ, J., RACZYŃSKA, E. & ORLIŃSKI, R. (1981). Pol. J. Chem. 55, 2031–2037.
- OSZCZAPOWICZ, J., TYKARSKA, E., JASKÓLSKI, M. & KOSTUR-KIEWICZ, Z. (1986). Acta Cryst. C42, 1816–1818.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SURMA, K., JASKÓLSKI, M., KOSTURKIEWICZ, Z. & OSZCZA-POWICZ, J. (1988). Acta Cryst. C44, 1031–1033.
- TYKARSKA, E., JASKÓLSKI, M. & KOSTURKÆWICZ, Z. (1986). Acta Cryst. C42, 740-743.

Acta Cryst. (1989). C45, 1649-1651

### Structure of *N*-(*tert*-Butoxycarbonyl)kainic Acid 2-Diphenylmethyl Ester\*

BY D. PAPAIOANNOU, E. SIVVAS, V. NASTOPOULOS, M. SEMERTZIDIS AND S. VOLIOTIS Department of Chemistry, University of Patras, GR-26110 Patras, Greece

(Received 15 December 1988; accepted 4 April 1989)

Abstract.  $C_{28}H_{33}NO_6$ ,  $M_r = 479.54$ , orthorhombic, a = 8.694 (2), b = 15.397 (3), c = $P2_{1}2_{1}2_{1}$ , 20.120 (4) Å, V = 2693.3 (9) Å<sup>3</sup>, Z = 4,  $D_x = 1.183$  g cm<sup>-3</sup>,  $\lambda$ (Mo K $\alpha$ ) = 0.7107 Å,  $\mu = 0.77$  cm<sup>-1</sup>  $D_r =$ F(000) = 1024, room temperature, R = 0.044 for 1514 unique observed reflections. The atoms N8, C9, C11 and C12 of the proline ring  $(O_2C-C12-N8-C9-C10-C11)$  lie in a plane to within  $\pm 0.07$  Å, while C10 is displaced out of the plane by 0.62 Å. The dihedral angle between the plane of the three atoms C9, C10 and C11 and the plane of the above-mentioned four atoms of the proline ring is 140 (1)°. The structure is stabilized in the a direction by means of intermolecular hydrogen bonds [OH18...O7 = 2.05 (7) Å]. Bond lengths and angles are normal.

**Experimental.** Recrystallization from ethyl acetate– petroleum ether 40–60°, m.p. 418–420 K,  $[\alpha]_D^{250°C} = -22.15°$  [dimethylformamide, 1 g dm<sup>-3</sup>].



\* Kainic acid is 2-carboxy-4-isopropenyl-3-pyrrolidineacetic acid.

0108-2701/89/101649-03\$03.00

Prismatic crystal  $0.20 \times 0.56 \times 0.78$  mm; Enraf-Nonius CAD-4 diffractometer,  $\omega$ -2 $\theta$  scan technique for data collection; unit cell from LS fit on 25 reflections in range  $7 < \theta < 10^{\circ}$ ; 8034 measured reflections up to  $2\theta_{max} = 56^{\circ}$  in index range -11 < h < 11, 0 < k < 18, 0 < l < 22, averaged 3681;  $\omega$ -scan width  $(0.8 + 0.3 \tan \theta)^\circ$ , scan rate 1.18- $5.49^{\circ}$  min<sup>-1</sup>, max. scan time 60 s, horizontal counter aperture  $(2.4 + 0.9 \tan \theta)$  mm; three reference reflections every 2 h, intensity decrease 0.4%, three orientation-control reflections after every 400 reflections, 1514 unique observed reflections with  $I > 2\sigma(I)$ used for analysis. Final R = 0.044, wR = 0.046,  $\sum w(\Delta F)^2$  minimized,  $w = k/[\sigma^2(F) + 0.00200(F)^2]$ , max.  $\Delta/\sigma < 0.24$  in final cycle; residual electron density in final difference synthesis between +0.08 and  $-0.10 \text{ e} \text{ Å}^{-3}$ ; atomic scattering factors from SHELX76 (Sheldrick, 1976); no absorption correction applied; all non-H atoms refined with anisotropic temperature factors; H atoms calculated with riding model (C—H = 1.08 Å,  $B_{iso} = 9.65$  Å<sup>2</sup>), except H9A, H9B, H10, H11, H12, H15A, H15B and H18 which were located in difference syntheses and refined isotropically. Computer programs used: PATSEE (Egert, 1985) and SHELXS86 (Sheldrick, 1986) for the solution of the structure, SHELX76 (Sheldrick, 1976) and PLUTO (Motherwell & Clegg,

© 1989 International Union of Crystallography